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1. Phys. A: Math. Gen. 27 (1994) 6827-6837. Printed in the UK 
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Abstract. The clasical r-matrix for the N = 1 super-Poin& algebra, given by Lukierski et al, 
is used to describe the gnded Poisson smcture on the N = I Poincar€ supergroup. The standard 
correspondence principle between the even (odd) Poisson brackets and (anti)comutators leads to 
the consistent quantum deformation of the super-Poincad group with the deformation parameter 
q described by the fundamental mass panmeter x (x - '  = Inq). The K-deformation of N = 1 
superspace JS dual to the xdeformed supersymmeuy algebra is discussed. 

1. htroduction 

Recently, in several papers [l-lo], the quantum deformations of the D = 4 Poincark 
algebra, which describes the relativistic symmetries, have been considered. Subsequently, 
we would like to stress here that during the last twenty years the supersymmenic extensions 
of relativistic symmetries has been one of the most studied ideas in the theory of fundamental 
interactions. We conclude, therefore, that it is natural to ask how to look for the quantum 
deformations of superalgebras or supergroups which describe the supersymmetric extensions 
of the four-dimensional spacetime symmetries. 

The deformation of an N = 1 super Poincard algebra with fourteen generators 1, = 
(Mi, N;, PF, Qm, Bk) (A = 1,. . . , 14) can be studied in at least two different ways. The 
first considers the Hopf subalgebras of quantum superconformal algebra U,(SU(2,2;  1)). 
The complete description of this approach should take all possible quantum deformations 
of SU(2,2;  1)J$ In the case studied so far (see [13]), the minimal Hopf subalgebra of 
U,(SU(2,2; 1)) containing deformed N = 1 super-Poincar6 generators has 16 generators: 

~4 Partially suppolfed by Lddi University grant 42Z93. 
tt Pahally supported by KBN grant 2P30208706. 
U Partially supported by KBN grant 2P30221706p02. 
7 On leave of absence from Institute for Theoretical Physics, University of Wrochw, pl. Maxa Boma 9, 50-204 
Wrochw. Poland. 
88 We would like to r e d l  here that for the complexified conformal algebra one M inhoduce the R-matrix with 
seven parameters [ I l l ,  The analozous general multipnrameter deformations of quantum superalgebras were not 
studied in the litmature (see. howeiw, the partial results in [12]). 
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6828 P Kosiriski et a1 

14 generators of super-Poincar6 algebra 
chiral generator A .  We have, therefore, 

as well as the dilatation generator D and the 

Uq(SU(2,2; 1)) 3 U,(%;lS(D @ 4) (1.1) 

i.e. in this way we obtain the quantum deformation of the N = 1 super-Weyl algebra. 
The second considers the contraction of quantum super-de Sitter algebraU,(OSp( I ;  4)). 

It appears that such a method provides a genuine 14-generator quantum deformation of the 
N = 1 Poincar6 superalgebra, the K-deformed super-Poincar6 algebra given first in [ 141 and 
described briefly in section 2. 

In this paper, we shall study further the quantum deformation of the N = 1 super- 
Poincard group given in [14]. From the K-deformed super-Poincar6 algebra, which is a 
non-commutative Hopf algebra, the non-trivial classical r-matrix can be extracted. Indeed, 
in [14] it has been shown that the graded-antisymmetric part of the first-order deformation- 
parameter coproducts h = I /K is given by 

1 
6 ( X )  = ;[X @ 1 + 1 @ X , r l  

~ = N ~ A P ~ - - Q , A Q , = ~ ~ ' I A A I ~  4 (1.3) 

(1.2) 

- 1 

where A A B A @ E - (-l)n(')V@)B @ A; i = 1,2,3; 01 = I ,  2. The bitensor r E 2 @I 2 
given by (1.3) describes the classical r-matrix for the N = 1 Poincar6. superalgebra, where 
Ni denotes the boost generators, Pi denotes the three-momenta and Qa, Qk describe the 
supercharges written as Weyl two-spinors. It appears that the classical r-matrix (1.3) satisfies 
the graded modified classical Yang-Baxter equationt, which permits us to introduce the non- 
trivial multiplication structure, determined by the cobracket (1.2). consistently onto the space 
g* dual to g. Introducing the generators ZA E representing the supergroup parameters, 
one can define, on the functions f (ZA), the graded Poisson r-bracket 

t For the non-supersymmetric case see [15-17]. 
$ In the supersymmetric case. one can introduce the left-hand and right-hand side derivatives 

4 2  c2 
where d = d = 0, satisfying different Leibnitz N I ~ S  

One gets that 

Using relations (A.3). one can write the Poisson r.bmcket on a supergroup in four different ways. which differ by 
suitable sip factors. The choice (1.5) is lhe standnrd one. 
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where D, denotes the left derivative which is right-invariant (left-invariant) under 

supergroup transformations for a = R (a = L )  and D, denotes the right derivative 
which is right-invariant (left-invariant) for a = R (a = L) ,  respectively. 

In section 3, we shall consider in greater detail the Poisson-Lie supergroup structure 
on the N = 1 Poincar.6 supergroup. It appears that for the choice of the r-matrix given 
by (1.3). the Poisson bracket (1.4) can be consistently quantized in a standard way, by 
the substitution of (graded) Poisson brackets by (anti-)commutators. In such a way, the 
supergroup parameters are promoted to the non-commuting generators of a quantum N = 1 
PoiucarC supergroup, with the coproduct rules described by the composition law of two 
N = 1 supersymmetry transformations. 

It appears that after this quantization procedure, the Lorentz sector of the quantum N = 1 
PoincarC supergroup is classical-in analogy with the case of the quantum Poincar.6 group, 
considered previously by Zaknewski [18]. The deformation of the remaining generators 
of the quantum N = 1 PoincarC supergroup, describing translations and supertranslations, 
provides the K-deformed N = 1 superspace, which is discussed in section 4. Finally, in 
section 5, we present an outlook and some unsolved problems. 

+ ( U )  

-+((I) 

2. D = 4 quantum superPoincar6 algebra 

The K-deformed D = 4 PoincarC superalgebra given in [14] has the structure of non- 
commutative and non-co-commutative Hopf superalgebra. It is described by the following 
set of relations. 

(i) Lorentz sector ( M P v  = (Mi, N;) where Mi = +,,khfjk describe the non-relativistic 
O(3) rotations and N, describe boosts). 

Algebra. 

[Mi, Mj] = i€ijkMk [Mi, Nj] = i€;jkNk (2.la) 

where (w = 0, 1,2,3) 

T~ = Q Y U , ) , ~ Q ~ .  

Co-algebra. 

(2.lb) 

Antipodes 

(2.4) 
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(ii) Four-momenta sector Pp = (Pi, PO). 
Algebra. 

[ M i ,  Pj] = icjjkPk [ M j ,  Po] = 0 ( 2 5 )  

(2.56) Po [ N j ,  Pj] = iK&jsinh - 

[P, .P”1=o(~L,v=o,1,2,3) .  (2.5~) 

[ N j ,  Po] = iPi 
K 

Co-algebra. 

A ( P ~ )  = p,  Q epolZu +e-  P l k  0 @ P, (2.W 

A(&) = Po Q 1 + 1 Q Po. (2.66) 

The antipode is given by the relation S(PJ = -5. 
(iii) Supercharges sector [14]. 

Algebra. 

Po (e,, Qb] =4~&,psin--22Pj(u,),~ 
2K (2.7~) 

IQ,, Q p l =  Qjl = O  

[ M i ,  Q a l =  -;(ui$Qp [Md, Q k l =  - $ ( b i ) f Q j  (2.76) 

i Po 1 Po 
2 2K 2 2 K  I N ,  , Q,] = -- cosh - (ui)fl Qp [ N i  , Q i ]  = - cosh -(ut): Qb (2.7~) 

(2.74 

On the basis of relations (2.3H2.7) one can sinL out the following features of the 
quantum superalgebra U,(%; I). 

(i) The algebra coproducts and antipodes of Lorentz boosts Ni do depend on Qe,  Qa, 
i.e. the K-deformed Poincark as well as the Lorentz sectors do not form Hopf subalgebras. 

(ii) By putting Qu = Qa = 0 into formulae (2.1X2.6). one obtains the K-deformed 
Poincark algebra considered in [4], i.e. 

&(%:l)lQ.=Q.=O =U,(%). 

(iii) From (2.5c), we see that the four-momenta commute. This property implies, by 
duality, the standard addition formula for the spacetime four-vectors (see section 4). 
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3. Poisson r-brackets for the N = 1 Poincar6 supergroup and their quantization 

The classical N = 1 Poincarb Lie superalgebra with the cobracket (1.2) describes the N = 1 
Poincar6 Lie super-bialgebra (j, i), which is called coboundary [17] due to relation (1.3) 
between the cobracket 6 and the r-matrix. 

The coboundary super-bialgebras with the r-matrix, satisfying the modified classical 
Yang-Baxter equation, describe infinitesimal Poisson-Lie supergoups, with the supergroup 
action (ZA, Z,) --+ Za o ZB consistent with the Poisson structure given by the r-Poisson 
bracket (1.5). These brackets satisfy the following properties. 

(i) Graded antisymmetry. 

If ,  gl = - ( - l )~(f)~@)lg,  f l .  (3.1) 

(ii) Graded Jacobi identity. 

(-l)n(f)n(h) {f, (g. h1J + (-l)n(g)n(h)Ih, {f. g l l +  (-l)'(f)%?, Ih,  f I1 = 0. (3.2) 

(iii) Graded Leibnitz rules. 

(3.3) 

(iv) Lie-Poisson property. Let us write the coproduct induced by the composition law 
of two supergroup transformations as 

A(Z) = Z&Z (3.4) 

where '0' denotes that we take the composition rule described by '0' and replace the 
product by the tensor product. The Lie-Poisson property takes the form 

g l =  I A ( f ) ,  A ( d 1  (3.5) 

where the following rule for the multiplication of graded tensor products should be used 

(fl  8 f d ( g 1  0gz) = (-l)n(f2)(-l)R(gl)fig, c3 fzgz. (3.6) 

In order to calculate explicitly the Poisson bracket (l.4), one can express the right- and 
left-invariant derivatives in terms of the ordinary derivatives, i.e. rewrite (1.4) as follows 

+ + 
a a 

a ZA azB If, g} = f -uAB(z)-g.  (3.7) 

If we observe that 

L 
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where p , p 
supergroup parameters ZA, one obtains that (L = +, R = -) 

+(a) + ( U )  

can be calculated by the differentiation of the composition formulae of the 

where the leading term at Z = 0 is linear and describes the cobracket of the N = 1 Poincar.6 
bi-superalgebra (i, i) in accordance with relation (1.2). 

The quantization of the N = 1 super-Poincar.6 algebra consists of two steps. 
(i) Write (3.9) for the independent parameters Z" (the generators of the algebra of 

{ZA. ZB) = o A B ( 2 )  (3.10) 

in (3.8), depending on the 

functions on the supergroup 'P~I) 

+(a) +(a)  , 
and calculate oAB by choosing the functions CL , f i  
parametrization of the supergroup. 

(ii) Quantize the Poisson bracket by the substitution 

where [A, g]* = Ab rt gA and choose the ordering of the %variables in oAB in such a 
way that the Jacobi identities are satisfied and the coproduct (3.4) is a homomorphism of 
the quantized superalgebra. 

Let us recall the supergroup composition law (A is a 2 x 2 Sl(2; C) matrix): 

+*I , Formulae (3.12) permits us to calculate the functions p , p in formula (3.9). We 
obtain, for example, the following formulae for left-sided left-invariant super-derivatives: 

+(+I a i  a D, =(A-')!- + -(A-'uPga)- aea 2 ax, 

and by conjugation 

(3.13) 

(3.14) 

Calculating the remaining invariant derivatives on the bosonic Poincar.6 subgroup and 
inserting the r-matrix (1.3) into formula (3.9). we obtain the following fundamental 
r-Poisson brackets for the coordinates (X , ,At ,  A{ ,  e,, 0.) on the N = 1 Poincar6 
supergroupt : 

t We use the spinorid representxion of the Lorenu generators, e.g. L, = $(oj)!L; + (Fj)bLQ 
Q b' 
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(i) Lorentz sector ( A t ,  A$. The Lorentz subgroup parameters are classical, i.e. 

{A!,  A t ]  = {A!,  A ; ]  = (A$,  A;]  = 0. (3.15) 

(ii) Translations ( X J .  (we denote 8 = (:),e = ( ' 1 )  ) 

i I 

s , '  

{ X i ,  X i ]  = - 8 T ~ i ( 1 2  - (AA+)-')ujB- --BTui(l - (AA')-')u'p 

( X o ,  X i ]  = - - X i  + --8'[uj, (AA+)-l]B 
(3.16) 

8K 8K 
1 i 
K 8K 

1 
{A!,  X i ]  = -((Aun)!A;(A) - (U' .A)!) 

1 
{A!, X o ]  = -(Auj)!AY(A) 

2K 

2 K  
(3.17) 

(iii) Supertranslations. 

1 
{ X i ,  = -(BTui),(12 - (AA+)-'):  

{X',  8a} = ---8;(12 + (AA')-'): 

4 K  

1 
4K 

(3.19) 

{ A ~ , 8 ' ] = ( A i , 8 y ] = 0 .  P (3.20) 

In order to quantize the Poisson brackets (3.15)<3.20), we perform the substitution 
(3.11). It appears that this substitution is consistent with Jacobi identities if we also keep 
the order of the coordinate generators on the right-hand side of (3.16) in the quantized caset. 
Furthermore, rewriting the composition law (3.12) as the coproduct rule for the coordinate 
generators gives 

A(X,)  = X ,  C4 1 + AL(A) C4 X ,  - 5 ( A ~ f B u & 8 i  C4 BU + V u $ A ~ "  C4 8?)  

A(&) = 4 8  1 + (A-')! 8 8, 

1 

(3.21) 

A(A!) = A ;  0 A$ 

One can show that formulae (3.21) describe the homomorphism of the quantized 
superalgebra given in section 2. Adding the formulae for the antipodes 

s(xr) = - A ; ( A - ~ ) X "  S(A!) = (A- ' ) !  S(0") = -A;@ (3.22) 

we see that we have obtained the complete set of relations describing the K-deformation of 
the N = 1 Poincar6 supergroup. 

t For ofher relations (3,17)-(3.20), the problem does not occur due to the classical nature of lhe Lorenk sector 
(see (3.W). 
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Let us observe that: 
(i) if we put A+A = 1, i.e. we consider the semidirect product T4;&SU(2) of the 

quantum subgroup T4.4 (quantum four-translations + quantum supertranslations) and SU(2) 
describes the space rotations, the non-trivial K-deformation occurs in only two relations 
(first, relation (3.17) and second, relation (3.19)); 

(ii) if we put A = 1, i.e. we consider the quantum subgroup T4:4. we obtain the K- 

deformed N = I superspace. It appears that only the commutator [Xo, O,] is K-deformed; 
and 

(iii) putting = 6’u = 0 into (3.15)-(3.17), one recovers the K-deformed 
inhomogeneous ISZ(2; @) group, given in [19]. 

4. The &-deformed N = 1 superspace 

Let us recall first that for K-deformed relativistic theory, with infinitesimal symmetries 
described by the E-deformed Poincare algebra [1,2,4,6,7], then are two different ways of 
introducing the Poincar.6 group and spacetime coordinates. 

(i) Using formula (2.5c), one can consider the spacetime coordinates by considering 
ordinary Fourier transforms of the functions depending on the commuting four-momenta 
[4,6,20]. In such an approach, the spacetime coordinate operators in commute and are 
introduced as the operators satisfying the relations 

i2*, @”I = itJnu. (4.1) 

(ii) Using the duality relation for Hopf algebras described by the scalar product on the 
quantum double with the following properties: 

we easily see that for the standard duality relation between 2, and pp generators, non-co- 
commutative four-momenta (see (2.6)) imply the non-commutativity of the coordinates [ 181 

(4.3) 

and commutativity of the four-momenta implies that 

A(2’) = in @ 1 + I @  iN. (4.4) 

One can rewrite the coproduct formulae (2.6) and (4.4) as the addition formulae for the 
four-momenta 

Pi (IfZ) = Pi (1) e #/k + pj2’e-p;’’/zK 

.;+a = 4) + xt;,. 

PS+” = Po (’) +PS’ (4.54 

and for the spacetime coordinates 

(4.56) 
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If we introduce the following element of the quantum double describing the translation 
sector of K-Poincark (xO = -xo, X'  = -k;)t - ^ .  

G(?IL; iG) = e - ~ ~ ~ ~ ~ ~ e i ~ , ~ ~ e - ~ ~ ~ ~ ~ ~  (4.6) 

one can encode the additional formulae (4.5a)-(4.5b) into the following multiplication rules: 

(4.74 

G(xf;); FpWO&): = G(xf;+z); Fp).  (4.7b) 

We see, therefore, that relations (4.6) describe the generalization of Fourier-transform kernels 
to the case of the translation sector of the K-Poincar€ group, with the coproducts determining 
their multiplication rule. 

Let us extend such a scheme to the N = 1 super-Poincad case. The non-commutative 
Hopf algebra, describing the K-deformed superspace, is obtained by the quantization of 
relations (3.16)-(3.19) with A = 1. One obtains 

G(kr;  pF))G(k"; p!)) = G(kG; p:]'") 

* .  .. . A ^ .  1 + ,  
[Xi,  X ' ]  = 0 [XO, X ' ]  = -X' 

K 

and the coproducts (3.21) imply the following composition law in superspace: 

We recall that the K-deformed N = 1 superalgebra is described by relations (2.7) and 
coproducts (2.8). The addition formula of the Grassmann-algebra-valued eigenvalues qe, 
gh of the supercharges, induced by (2.8). is 

(4.10) 

If we introduce the following quantum counterpart of the finite supertranslation group 
elements in momentum as well as coordinate superspace: 

.. 
(4.1 la) 

(4.11b) 

t For the concepts of exponentiation of the generators of the quantum double consisting of q u a "  Lie algebra 
and a dual quantum Lie group see [22-24] where the exponentials (4.6) are called quantum T-matrices. The notion 
of the quantum T-matrix is related to the notion of the universal bicharacter of Woronowicz (see e.g. 1211. 

I -?  e o  e l X P 0  
. "  

G(p, ,q , ,q , )  = e-iXnP%$x P, 

e(x p , e  m , e . )  0 : -  -ei(=".%t6'&)8'&) 
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where = Z K  sinh 2 and = Pi, we obtain the following multiplication laws: 

Following the discussion for ordinary supersymmetry (see e.g. [?.SI), one can consider the 
objects (4.11~) and (4.11b) as describing the superfields in momentum superspace and in 
the usual (coordinate) superspace, respectively. 

It should be mentioned that algebra (4.8) describes the superspace coordinates in the 
particular Lorentz frame (A = 1). If we allow non-trivial Lorentz transformations, the 
algebra of superspace coordinates is no longer closed and one should consider the full 
algebra given by (3.15t(3.20). 

5. Outlook 

In this paper we presented a quantum K-deformation of the N = 1 Poincar6 supergroup, 
which is a non-commutative and non-co-commutative Hopf superalgebra. We would like 
to mention the following problems which deserve further study. 

(i) It appears that for the non-semisimple Lie (super)algebras. the ‘naive’ quantization 
(see (3.11)) of the r-Poisson bracket may be very useful as a consistent quantization 
scheme. In [IS], as well as in the case presented in this paper, the ambiguities related 
to the ordering of the right-hand side of the quantized r-Poisson brackets are resolved in a 
unique way. It would be interesting to classify the classical r-matrices for non-semisimple 
Lie (super)algebras and find out for which cases the ‘naive’ quantization of the r-Poisson 
bracket would lead to a consistent quantizationt. 

(ii) One can show that the K-deformed N = 1 supersymmetry algebra (e,+, Qa, Pp) as 
a Hopf superalgebra (see section 2) is dual to the Hopf superalgebra describing the N = 1 
K-deformed superspace (see section 4). It would be important to show that the whole 
N = 1 K-deformed supergroup is dual (possibly modulo some nonlinear transformations 
of the generators) to the N = 1 K-Poincar6 superalgebra, given in [14]. We would like to 
stress that such duality for the Kdefonned Poincar6 group given in [I81 is not known. 

(iii) It would be interesting to generalize the results of [I41 and of this paper to N > 1. 
We would like to mention that complete N-extended Poincar6 superalgebra, with N(N - 1) 
central charges. can be obtained by the construction of the superalgebra OSp(2N; 4) [26].  
Replacing the classical superalgebra OSp(2N; 4) by its q-analogue Uq(OSp(2N: 4)) and 
performing the quantum-de Sitter construction limit with the rescaling (2.3), one should 
obtain the quantum deformation of the N-extended super-Poincar6 algebra. For obtaining 
the N-extended K-deformed Poincart supergroup, it is sufficient to extend the classical 
r-matrix (1.3) to N > 1 and follow the method presented in this paper. 

(iv) Finally, an important question is the application of the K-deformed Poincar6 algebra 
as well as the superalgebra to physical models. It should be stressed that the K-generalization 
of the free classical and quantum fields has already been proposed (for the K-deformed 
Klein-Gordon field see [6] and for the K-deformed Dirac field see [6,27]). For the 
description of the K-deformed gauge fields, it is important to describe the x-deformed 

t This prognmme is now under consideration; the classical r-matrices for simple q u a ”  Lie-algebras and Lhe 
‘naive’ quantization of corresponding quadntic r-Poisson brackeu m also being studied. 
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differential calculus, in particular the K-deformed Cartan forms. For this purpose, the 
non-commutativity of the generators of the K-Poincar6 group as well as the generators of 
the K-Poincar6 supergroup should be put in R-matrix form. I t  is known, however, that 
for the quantum K-Poincari group, such R-matrices exist and do not satisfy the quantum 
Yang-Baxter equation. We see, therefore, that the formalism of differential calculus on the 
K-Poincar6 group and the K-Poincar6 supergroup goes beyond the standard formulations 
given, e.g., in [28,29] and requires further consideration. 
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